Search results for "Plateau's problem"
showing 3 items of 3 documents
On the plateau problem for surfaces of constant mean curvature
1970
The Plateau-Bézier Problem
2003
We study the Plateau problem restricted to polynomial surfaces using techniques coming from the theory of Computer Aided Geometric Design. The results can be used to obtain polynomial approximations to minimal surfaces. The relationship between harmonic Bezier surfaces and minimal surfaces with free boundaries is shown.
2021
Abstract We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains (Y, dY ). We say that a metric space (Y, dY ) is a quasiconformal Jordan domain if the completion ̄Y of (Y, dY ) has finite Hausdorff 2-measure, the boundary ∂Y = ̄Y \ Y is homeomorphic to 𝕊1, and there exists a homeomorphism ϕ: 𝔻 →(Y, dY ) that is quasiconformal in the geometric sense. We show that ϕ has a continuous, monotone, and surjective extension Φ: 𝔻 ̄ → Y ̄. This result is best possible in this generality. In addition, we find a necessary and sufficient condition for Φ to be a quasiconformal homeomorphism. We provide sufficient conditions for the restriction of Φ to 𝕊1 being a quasi…